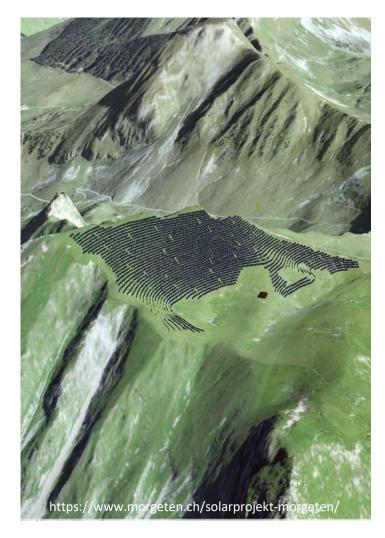


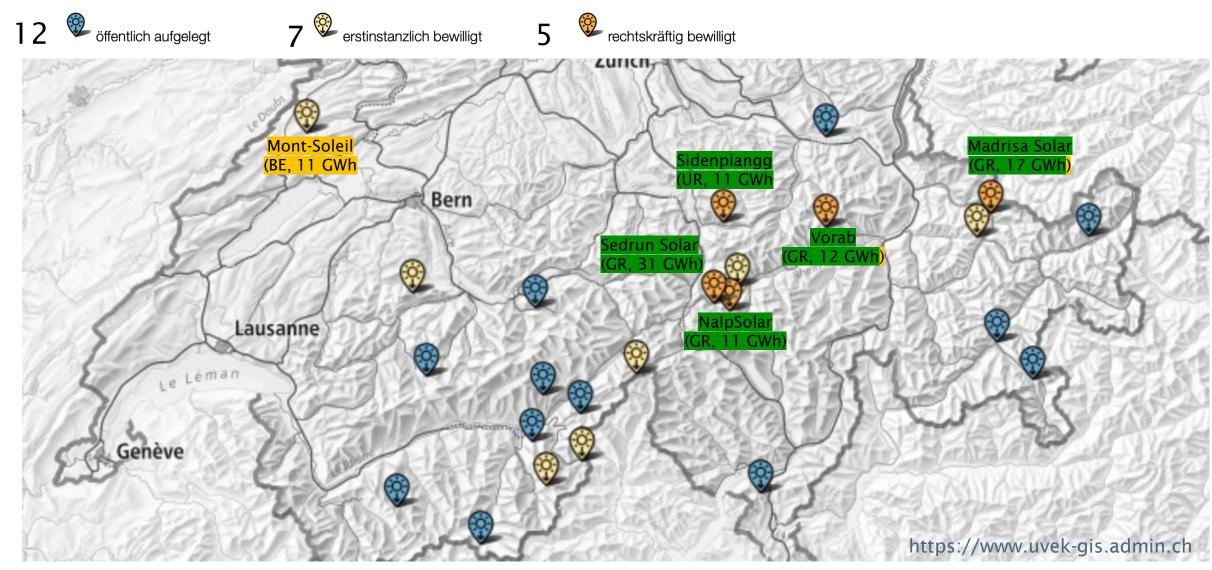
Solaranlagen auf Alpweiden – Auch eine Chance für die Landwirtschaft? Dr. Beat Reidy, Prof. für Graslandnutzung und Wiederkäuersysteme

▶ Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Inhalte


- 1. Alpine Solaranlagen in der Schweiz Aktueller Stand des «Solarexpress»
- 2. (Alpine) Solaranlangen Interaktion mit Vegetation und landwirtschaftlicher Nutzung
- 3. Fallbeispiel Mont-Soleil PV-Anlage in «Co-Existenz» mit Landwirtschaft
- 4. Schlussfolgerungen

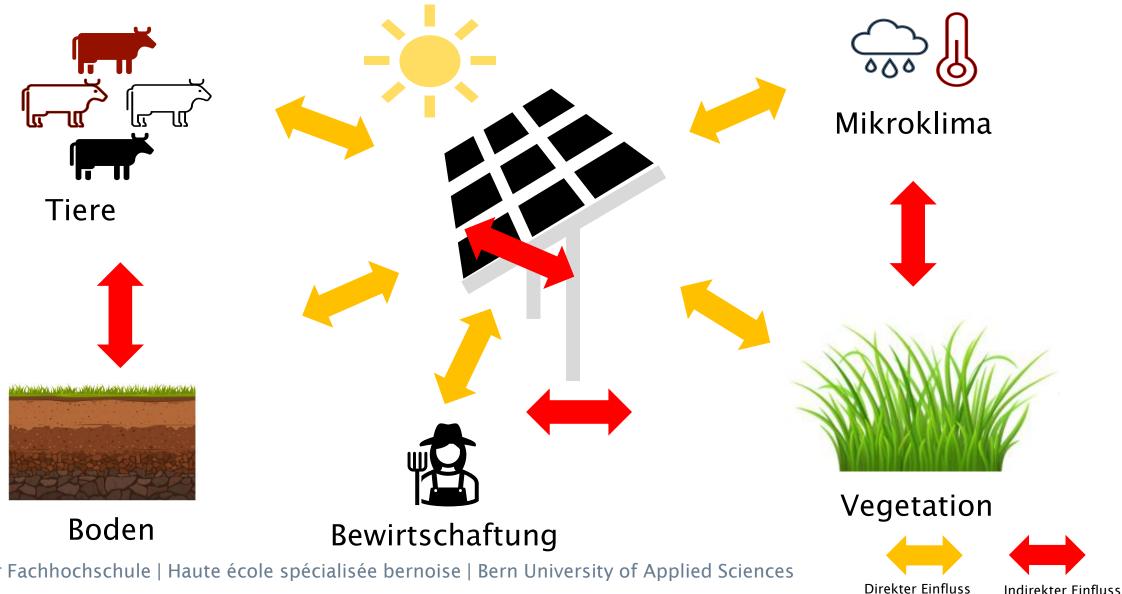
"Solarexpress" – Anpassung Energiegesetz als Folge des Ukrainekrieges


- Dringliche Massnahmen zur kurzfristigen Bereitstellung einer sicheren Stromversorgung im Winter
- ► Erstellung von Photovoltaik-Grossanlagen bis Gesamtproduktion von insgesamt maximal 2 TWh (Gesamverbrauch 2023 CH: 56 TWh)
- Ausgewiesener Bedarf, keine Planungspflicht
- Minimale Grösse 10 GWh mit mindestens 500 kWh pro kW Leistung im Winterhalbjahr
- ▶ Das Baugesuch muss bis zum 31.12.2025 öffentlich aufgelegt sein
- Beteiligung durch Bund in der Höhe von maximal 60 Prozent der Investitionskosten

Vorteile Alpiner Solaranlagen in der Schweiz

- ► Tiefere Temperaturen (-0.5° C pro 100 m)
 - Wirkungsgrad von PV-Zellen steigt mit sinkender Temperatur
- ► Höhere Globalstrahlung (ca. 1 kWh/m² pro 100 m)
 - Strahlungsmenge nimmt mit zunehmender Höhe zu (Nebel, Wolken, Atmosphäre)
- Reflektion (Albedo-Effekt)
 - Strahlung wird durch Schneedecke reflektiert
- Alpine Solaranlagen produzieren mehr Energie als vergleichbare Solaranlagen im Mitteland
- ► Effekte v.a. in den Wintermonaten ausgeprägt Je nach Quelle 2 bis >4-mal mehr Strom
- Wirkungsgrad von PV-Anlagen ca. 24%; Photosynthese ca. 5%

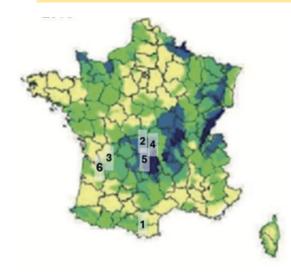
24 geplante Anlagen mit ca. 553 GWh/a Produktion


Anpassung der Raumplanungsverordnung

Art. $32c^{29}$ Standortgebundene Solaranlagen ausserhalb der Bauzonen

- ¹ Solaranlagen mit Anschluss ans Stromnetz können ausserhalb der Bauzonen insbesondere dann standortgebunden sein, wenn sie:
 - a. optisch eine Einheit bilden mit Bauten oder Anlagen, die voraussichtlich längerfristig rechtmässig bestehen;
 - schwimmend auf einem Stausee oder auf anderen k\u00fcnstlichen Gew\u00e4sserfl\u00e4chen angebracht werden; oder
 - c. in wenig empfindlichen Gebieten Vorteile für die landwirtschaftliche Produktion bewirken oder entsprechenden Versuchs- und Forschungszwecken dienen.

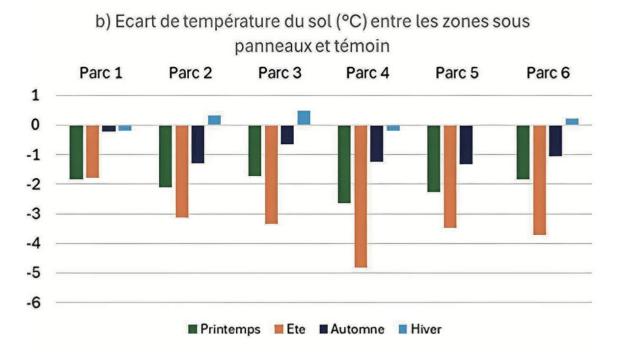
https://www.fedlex.admin.ch/eli/cc/2000/310/de#art_32_c


Alpine Solaranlagen - Interaktionen mit Vegetation und landwirtschaftlicher Nutzung

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

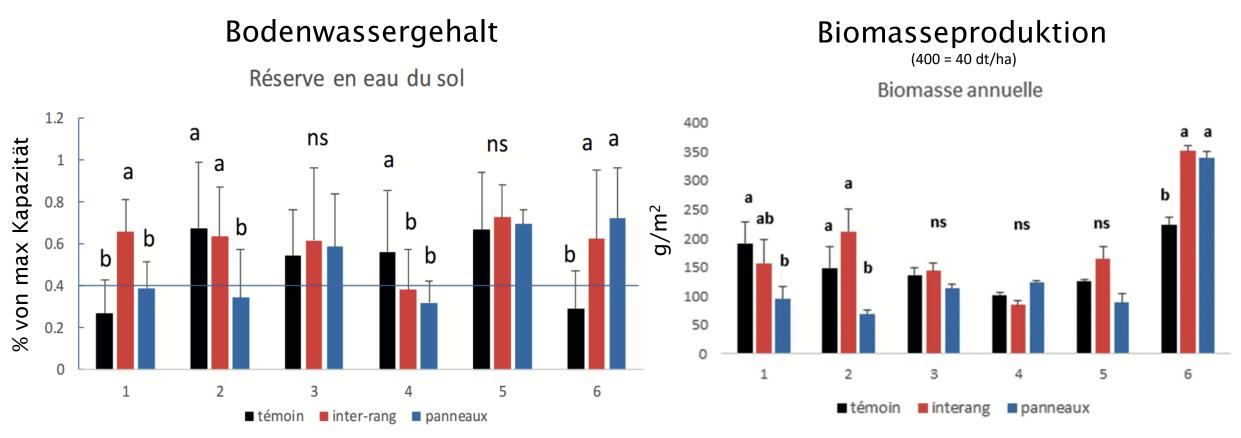
Auswirkungen von PV-Anlagen auf extensivem Grasland

Picon-Cochard C., Stepec A., Gaulier M., Bereyziat N., Payet S., Colas V., Gérardin T., Combes D. (2025). Réponses contrastées de prairies à faible potentiel de production en conditions agrivoltaiques. Fourrages 262, Pages, 77-89.

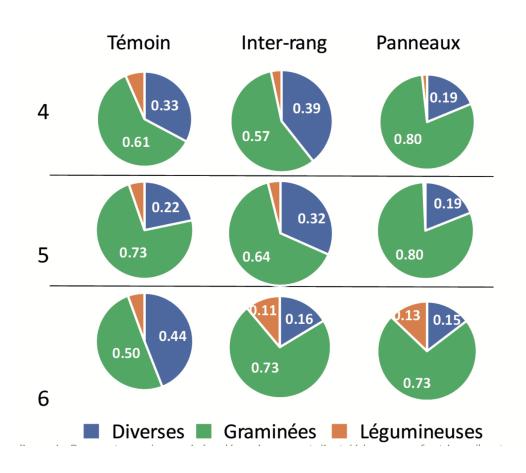

Caractéristiques	Parc 1	Parc 2	Parc 3	Parc 4	Parc 5	Parc 6
Année de mise en	2010	2020	2021	2018	2014	2017
service						
Surface (ha)	17	7	8	17	13	2.82
Localisation	Aude	Allier	Dordogne	Allier	Cantal	Gironde
Altitude (m)	164	258	190	235	840	30
Point bas des panneaux (m)	0.86	0.8	0.8	0.8	0.7	1.0
Point haut des panneaux (m)	2	2.6	2.8	3.1	2.1	2.66
Inter-rang (m)	2.97	3.31	6.2	4	1.9	4
Inclinaison des panneaux (°)	25	20	25	25	25	-45 à +45
Taux d'occupation au sol* (TOS, %)	51	59	38	47	61	45-57**
Type de panneaux		Mobiles, monopieux				
Orientation des panneaux	Sud					Est-Ouest

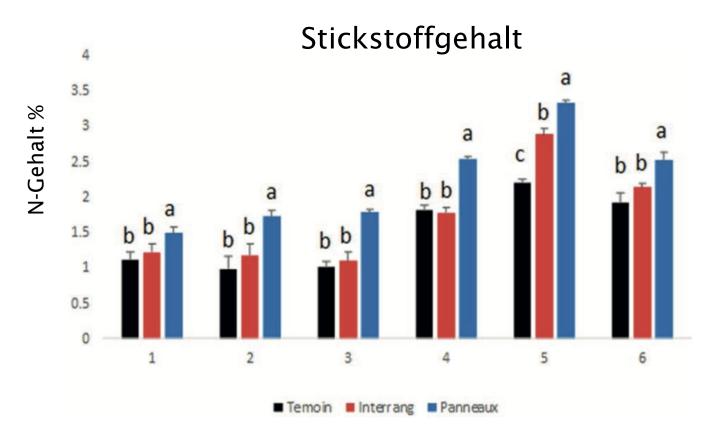
Reduktion der Strahlung und der Bodentemperatur

Reduktion der Strahlung (PAR) zwischen (I) und unter (P) den Panels


Parcs	% ombrage I	% ombrage P
1	11 ± 4	82 ± 7
2	28 ± 33	93 ± 2
3	6 ± 7	92 ± 1
4	36 ± 10	94 ± 1
5	35 ± 13	93 ± 0.5
6	30 ± 2	75 ± 3

Temperaturdifferenz zwischen Kontrollfläche und unter Panels


Picon-Cochard et al. 2025


Unterschiedliche Effekte auf Bodenwasserhaushalt und Biomasseproduktion

Picon-Cochard et al. 2025

Veränderte Artenzusammensetzung und höherer Stickstoff bzw. Rohproteingehalt unter den Panels

Auswirkungen von PV-Anlagen auf Vegetation und landwirtschaftliche Nutzung

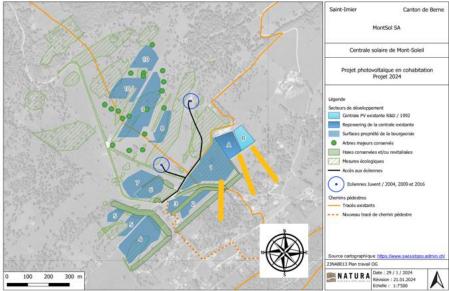
- ► Gemäss bisherigen Untersuchungen* beeinflussen PV-Anlagen
 - Mikroklimatische Bedingungen mit verändertem räumlichem Angebot an Wasser,
 Temperatur und Strahlung
 - Lichtkonkurrenz mit Pflanzen verändert Biomasse und Futterwert
- Wichtig
 - Auswirkungen sind sehr standort- und anlagenspezifisch
 - ▶ In ariden Regionen konnten auch Vorteile für die Vegetation beobachtet werden
 - Das Zusammenspiel von PV-Anlagen und Weidetieren ist bislang kaum untersucht worden

^{*}z.B. Picon-Cochardet al. 2025, Vervloesem et al. 2022, Weselek et al. 2019, Armstrong et al. 2016

Mont-Soleil – Hintergrund

- ▶ 1'245 m ü. M. im Berner Jura
- Gesamtfläche von ca. 75 ha
- Besitz von Burgergemeinde St. Imier
- ▶ Sehr flachgründige Böden (meist <10-50 cm) auf Kalkstein (Karst)
- Typische Vegetation
 - Wytweiden mit Kammgras- und Trockenrasengesellschaften
- Sömmerungsweide für Jungvieh (98 NST, 175 Tiere)
- Gebiet mit "sanftem" Sommer-/Wintertourismus

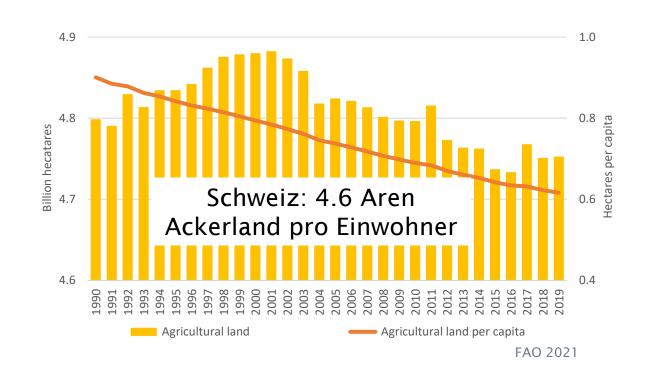
Mont-Soleil - Energieproduktion


- Grösster Windpark der CH seit 1995
 - ▶ 16 Turbinen mit ca. 80 MWh
- Bestehende PV-Anlage mit 550 MWh seit 1990
- Zu F&E Zwecken mit Fokus auf Energieproduktion
 - Test Langlebigkeit und Wirkungsgrad verschiedener Solarmodule durch BFH/EPFL
- Keine landwirtschaftliche Nutzung, abgetrennte Beweidung durch Schafe
- ► Dauer Bewilligungsverfahren 12 Monate

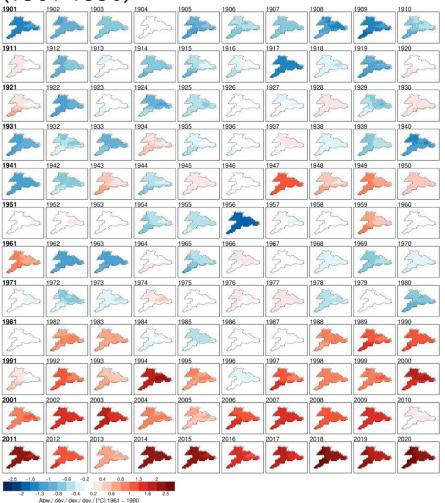
Neu geplante PV-Anlage in «Co-Existenz» mit

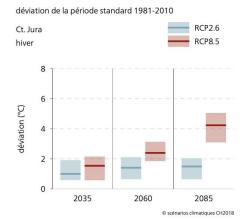
landwirtschaftlicher Nutzung

- Flächennutzung
 - PV/Landwirtschaft/Natur 15 ha
 - Natur-/Ökologischer Ausgleich 10 ha
 - Hecken, freistehende Bäume, Trockenrasen
- Energieproduktion
 - ▶ 11 GWh, 5 GWh im Winter
 - Maximale Leistung 8.5 MW
- Investitionskosten
 - ▶ 25 Mio. CHF PV-Anlage
 - 1 Mio. Massnahmen ökologischer Ausgleich und Begleitforschung

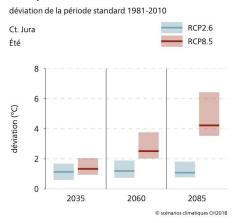


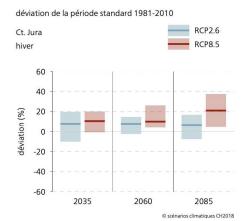
Warum nur eine «Co-Existenz» mit der Landwirtschaft sinnvoll ist

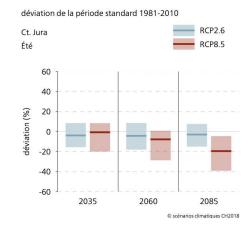

- Boden für die Nahrungsmittelproduktion wird immer knapper
 - Bevölkerungswachstum
 - Steigender Bedarf an tierischen Lebensmitteln
 - Unsicherere Produktion in Folge des Klimawandels
 - > PV-Anlagen auf landwirtschaftlich genutzten Flächen in "Co-Existenz"


Mont-Soleil – Einzigartiger Standort zur Analyse der Herausforderungen und Chancen einer «Co-Existenz» von Landwirtschaft und PV-Nutzung

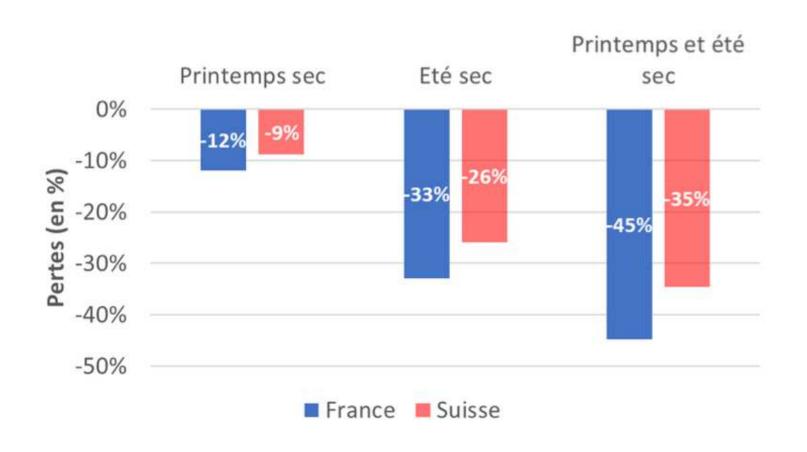
Der Klimawandel findet auch im Jura statt

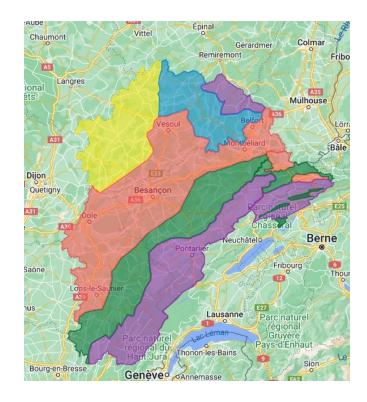

Déviation long terme de la température (1961-1990)


Température hiver


Température été

Précipitations hiver




Précipitations été

Prognosen zu den Auswirkungen des Klimawandels auf die

Graslanderträge im Jura

Auswirkungen auf die Produktivität

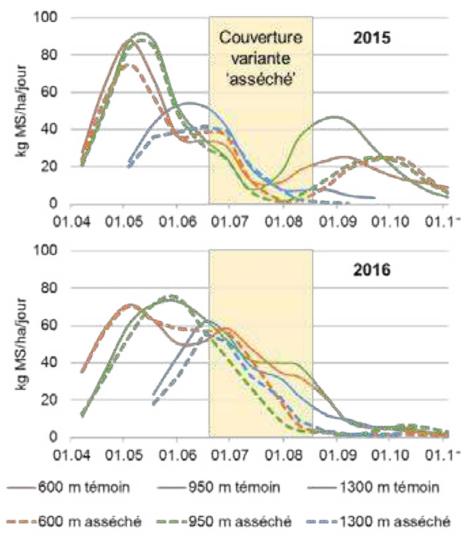


Tableau 2. Rendement annuel (kg MS/ha/année) des trois pâturages selon les deux variantes (témoin) et (asséché)

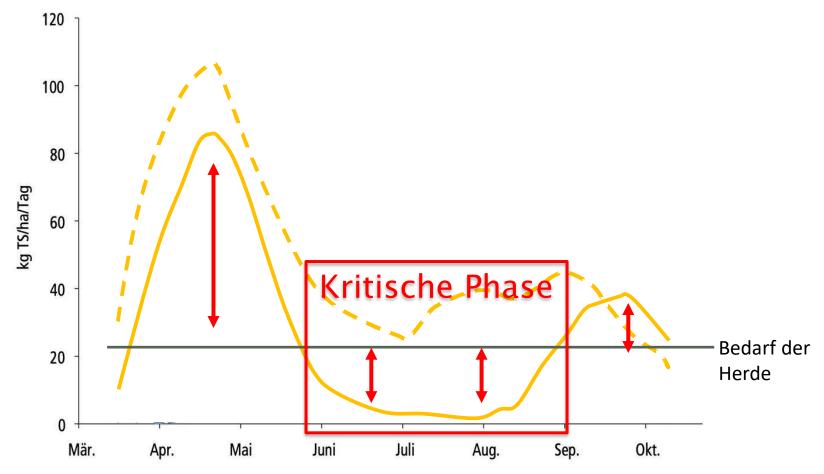

année	témoin	assé ché	
2015	6991	6254	
2016	7839	6866	
moyenne	7415	6560	-12%
2015	7735	6148	
2016	7424	5688	
moyenne	7580	5918	-22%
2015	3509	2713	
2016	4119	3012	
moyenne	3814	2863	25%
	2015 2016 moyenne 2015 2016 moyenne 2015 2016	2015 6991 2016 7839 moyenne 7415 2015 7735 2016 7424 moyenne 7580 2015 3509 2016 4119	2015 6991 6254 2016 7839 6866 moyenne 7415 6560 2015 7735 6148 2016 7424 5688 moyenne 7580 5918 2015 3509 2713 2016 4119 3012

Figure 22. Croissance journalière de l'herbe (kg MS/ha/jour) des trois pâturages selon les deux variantes (témoin) et (asséché)

Einfluss von Sommertrockenheit auf das Graswachstum von Juraweiden

Ertrag TS 02/04: 106 dt/ha

Ertrag TS 03: 62 dt/ha

Mosimann et al 2012

Einfluss des Klimawandels auf Sömmerungsweiden

- Phasen mit Sommertrockenheit werden in Zukunft weiter zunehmen
- Die Jura-Region wird stärker betroffen sein als die Alpenregion
- Hauptfolge und Herausforderung für die Weidewirtschaft
 - Futterknappheit aufgrund geringerer
 Erträge und verminderter Qualität in den Sommermonaten
- Intensiv genutzte Weiden/Wiesen sind empfindlicher gegenüber Trockenheit

PV-Anlage Mont-Soleil in «Co-Existenz» – Eine Antwort auf die Auswirkungen des Klimawandels in der Juraregion?

Wissenschaftliche Begleitung PV Mont-Soleil – Geplante

Untersuchungen

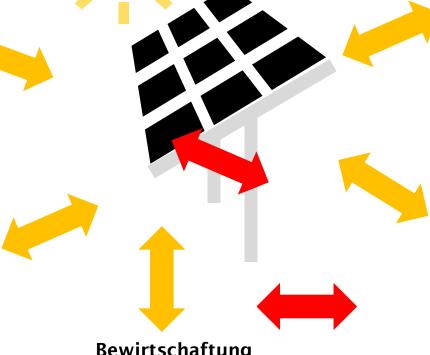
Tiere

Tierwohl/-verhalten

- Magnetfelder
- Verletzungen
- · Weide- und Ruheverhalten
- Ausscheidungen
- · Beschädigung der Anlage

Methodik

GPS-Tracking, Beobachtungen von Verhalten und Tierwohl (Verletzungen, Aborte, Fruchtbarkeit)


Boden

Bodenparameter

- Bodenfeuchte
- Nährstoffgehalte
- Verdichtungen
- Erosion

Methodik

Kartierung, Bodenfeuchte, Bodenanalysen

Bewirtschaftung

Ökonomie

- Verfügbare Weidefläche
- Verändertes Weidemanagement

Methodik

Kostenrechnungen

Mikroklima

Kontinuierliche Messung von Temperatur, Strahlung, Feuchtigkeit, Niederschlag in PV-Anlage und auf Referenzflächen

Methodik

Mikrometeorologie (Wetterstationen)

Artenzusammensetzung

Botanische Zusammensetzung und Biomasse

- · Verlauf des Wachstum
- · Ertrag und Qualität
- Artenzusammensetzung
- Floristische und faunistische Biodiversität Methodik

Wachstumskurven, Nährstoffanalysen, Artenzusammensetzung

Monitoring des Weide- und Ruheverhaltens mit GPS-Trackern

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Mikrometeorologische Messungen

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Bestimmung der Graswachstumskurven

Entwicklung der Biomasse und Futterqualität

Wissenschaftliche Begleitung - Langzeiteffekte

2025/26)

2027

2028

2029

2030

2031

Vorbereitungsarbeiten und erste Untersuchungen

- → Implementierung von Messtechnik
- → Erstellen von Referenzen

Detaillierte Langzeitstudien

- → Mehrjährige Untersuchungen
- → Detaillierte Bewertungen der Auswirkungen, Wechselwirkungen und wirtschaftlichen Effekte der PV-Anlage auf die Koexistenz mit der Landwirtschaft

Masterarbeit von Monika Freiburghaus

Dissertationsprojekt

Schlussfolgerungen

- Konkurrenz um begrenzte landwirtschaftlich nutzbare Flächen wird weiter zunehmen
- Der Klimawandel wird sich auf die Produktivität der Wiesen in der Schweiz auswirken
- Regionen mit flachgründigen Böden und geringer Wasserspeicherkapazität werden von den Auswirkungen des Klimawandels besonders betroffen sein
- PV-Anlagen auf Alpweiden stellen Konkurrenz zur landwirtschaftlichen Nutzung dar, in sinnvoller «Co-Existenz» könnten sich auch Chancen ergeben
- Um funktionierende Nutzungskonzepte zu entwickeln, ist aber Begleitforschung und Entwicklungsarbeit (wie in der RPV verlangt!) unter Berücksichtigung der Bedürfnisse beider Nutzungstypen notwendig

